博客
关于我
【MapReduce】---- MR 框架原理 之 Shuffle机制
阅读量:329 次
发布时间:2019-03-04

本文共 765 字,大约阅读时间需要 2 分钟。

Map方法之后Shuffle过程

在Map方法之后,Reduce方法之前的数据处理过程被称为Shuffle。这一过程主要包括以下几个步骤:

1. 分区

在溢写前对环形缓冲区中的数据集进行分区处理。这种分区通常基于键值的分布情况,以确保后续处理的高效性。

2. 排序

在分区完成后,需要对每个分区的数据集进行排序。排序规则与分区方式保持一致,以便于后续的合并和处理。

3. Combiner(可选)

对于需要汇总操作的数据集,在溢写到磁盘之前,可以利用Combiner对各个分区的数据进行合并。这种方式能够显著减少需要写入磁盘的数据量。

4. 分区归并排序

完成分区和排序后,对每个分区的数据集进行归并处理。归并过程中需要对同一分区内的数据进行合并和排序(如果需要的话)。

5. 压缩

在数据处理完成后,对数据进行压缩。压缩后的数据将以更高效的方式写入磁盘,以减少存储空间的占用。

6. 写磁盘

最终,将压缩好的数据按分区的方式写入磁盘。这一步骤通常是Shuffle过程中最耗时的部分之一。

Reduce方法之前Shuffle过程

在Reduce方法之前,Shuffle过程主要负责数据的预处理和排序工作。其主要步骤包括:

1. 拷贝

将Map处理输出的同一分区数据拷贝到内存中。如果内存空间不足,超出部分将溢写到磁盘中。同时,为了保证磁盘写入的高效性,可能会启动一个ReduceTask来处理该分区的数据。

2. 归并排序

将内存和磁盘上的数据集进行归并。每个开启的ReduceTask都会从不同的MapTask拉取相同分区的数据进行合并,并对合并后的总数据集进行排序。

3. 分组

完成归并排序后,对归并好的数据按照相同的键值进行分组。每个分组的数据将等待Reduce()方法的处理,最终会被汇总到同一个ReduceTask中。

转载地址:http://ckeq.baihongyu.com/

你可能感兴趣的文章
npm的常用操作---npm工作笔记003
查看>>
npm的常用配置项---npm工作笔记004
查看>>
npm的问题:config global `--global`, `--local` are deprecated. Use `--location=global` instead 的解决办法
查看>>
npm编译报错You may need an additional loader to handle the result of these loaders
查看>>
npm设置淘宝镜像、升级等
查看>>
npm设置源地址,npm官方地址
查看>>
npm设置镜像如淘宝:http://npm.taobao.org/
查看>>
npm配置安装最新淘宝镜像,旧镜像会errror
查看>>
NPM酷库052:sax,按流解析XML
查看>>
npm错误 gyp错误 vs版本不对 msvs_version不兼容
查看>>
npm错误Error: Cannot find module ‘postcss-loader‘
查看>>
npm,yarn,cnpm 的区别
查看>>
NPOI
查看>>
NPOI之Excel——合并单元格、设置样式、输入公式
查看>>
NPOI初级教程
查看>>
NPOI利用多任务模式分批写入多个Excel
查看>>
NPOI在Excel中插入图片
查看>>
NPOI将某个程序段耗时插入Excel
查看>>
NPOI格式设置
查看>>
NPOI设置单元格格式
查看>>